
Dynamic Delta Modeling∗

Michiel Helvensteijn
CWI, Amsterdam
Leiden University
The Netherlands

michiel.helvensteijn@cwi.nl

ABSTRACT
Abstract Delta Modeling (ADM) offers an algebraic descrip-
tion of how a (software) product line may be built so that
every product can be automatically derived by structured
reuse of code. In traditional application engineering a single
valid feature configuration is chosen, which does not change
during the lifetime of the product. However, there are many
useful applications for product lines that change their con-
figuration at run time. We present a new technique for
generating efficient dynamic product lines from their static
counterparts. We use Mealy machines for their dynamic re-
configuration. Furthermore, we posit that monitoring some
features will be more expensive than monitoring others, and
present techniques for minimizing the cost of monitoring the
system. We stay in the abstract setting of ADM but the
techniques can be instantiated to any concrete domain. We
illustrate them through the example of a mobile applica-
tion for Android, which dynamically reconfigures a devices
operating profile based on environmental factors.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
F.1.1 [Theory of Computation]: Models of Computation

General Terms
Theory, Algorithms, Performance

Keywords
Dynamic product lines, delta modeling, Mealy machines, op-
timization, profile management

∗This research is funded by the EU project FP7-231620
HATS: Highly Adaptable and Trustworthy Software using
Formal Models (http://www.hats-project.eu)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC - Vol. II September 02 - 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1095-6/12/09 ...$10.00.

1. INTRODUCTION
Delta Modeling [14, 12, 13] is designed as a technique for
implementing software product lines [11]: a way to optimally
reuse code between software products which differ only by
which features they support. The code is divided into units
called deltas. Incremental application of a specific set of
deltas can transform a core product in order to mechanically
generate a specific product from the product line. Each
delta has an application condition, which indicates for which
combinations of features the delta should be applied. Which
combinations of features are legal is expressed through a
feature model [2]. Such legal combinations of features are
commonly referred to as feature configurations.

Clarke et al. [4, 5] described delta modeling in an abstract
algebraic setting called the Abstract Delta Modeling (ADM)
approach. In that work, delta modeling is not restricted
to software product lines, but rather product lines of any
domain. It gives a formal description of deltas and how
they can be combined and linked to the feature model.

Traditionally, a feature configuration is chosen once at
build-time. Its corresponding product is then generated and
does not change at runtime. Dynamic (software) product
lines [8] are product lines for which the feature configuration
is not fixed at runtime. It can change dynamically, in order
to meet changing requirements for continuously running sys-
tems. Dynamic product lines have already been discussed
in the context of delta modeling [6], but only in a concrete
object oriented setting (called delta oriented programming).

We now formalize dynamic product lines in the context
of ADM. We show how to transform a static product line,
as described in [4, 5], into a dynamic product line. It takes
the form of a Mealy Machine, a finite automaton with an
input symbol and an output symbol on every transition. In
our case, the input symbol corresponds to a feature that has
been turned on or off and the output symbol corresponds to
the delta that has to be applied to the current product in
order to bring it up to date.

Based on this representation of dynamic product lines, we
introduce a cost model. We assume that monitoring a spe-
cific feature for change has a certain cost, and that some
features are more costly than others. We then describe how
to optimize dynamic product lines by selectively removing
transitions from them, effectively disregarding costly fea-
tures until they become relevant.

We also introduce a novel case study to demonstrate this
approach for a concrete domain. To illustrate both dynamic
product lines and the versatility of ADM, we do not use a
traditional software product line. Instead, we use a profile

manager for modern mobile devices, such as smartphones;
a much more common use case these days. By monitoring
personal data such as time, location and schedule, a smart-
phone can automatically adjust its internal settings based
on user defined rules. We show that delta modeling and,
by extension, dynamic delta modeling, are a natural fit for
modeling such rules.

The main contribution of this paper consists of the exten-
sion of the ADM formalism to dynamic product lines, the
formal treatment of cost and optimization, as well as the
formal description of the case study. These are mostly the-
oretical. A practical evaluation is planned as future work.

The rest of the paper is structured as follows. Section 2
summarizes the relevant theory of ADM. Section 3 intro-
duces our case study, both as motivation and illustration.
Dynamic product lines are formally described in Section 4
as an extension to ADM. Section 5 describes the cost model
as well as our optimization strategy. Finally, Section 6 con-
cludes the paper and discusses related and future work.

2. PRELIMINARIES
To make this paper self-contained, we now repeat the rele-
vant theory from ADM. For more detailed information, we
refer the reader to [4, 5]. Readers familiar with the theory
can skip this section.

2.1 Products and Deltas
Firstly, we assume a set of products, P. The set of possible
modifications to products forms a delta monoid, as follows.

Definition 1 (Delta Monoid). A delta monoid is a
monoid (D, ·, ε), where D is a set of product modifications
(referred to as deltas), and the operation · : D × D → D
corresponds to their sequential composition. y ·x denotes
the modification applying first x and then y. The neutral
element ε of the monoid corresponds to modifying nothing.

Applying a delta to a product results in another product.
This is captured by the notion of delta action.

Definition 2 (Delta Action). Delta action is an op-
eration −(−) : D × P → P. If d ∈ D and p ∈ P, then
d(p) ∈ P is the product resulting from applying delta d to
product p. It satisfies (y ·x)(p) = y(x(p)) and ε(p) = p.

This all leads to the notion of a deltoid, which describes
all building blocks necessary to define a product line in a
concrete domain.

Definition 3 (Deltoid). A deltoid is a 5-tuple
(P,D, ·, ε,−(−)), where P is a product set, (D, ·, ε) is a
delta monoid and −(−) is a delta action operator.

Finally, we describe a useful notion of expressiveness.

Definition 4 (Maximal Expressiveness). A deltoid
(P,D, ·, ε,−(−)) is said to be maximally expressive iff
∀p, p′ ∈ P : ∃x ∈ D : x(p) = p′.

Having this property means that any product can be trans-
formed into any other product by applying the right delta.
From this point on, we assume that every deltoid is maxi-
mally expressive. This is often true in practice.

2.2 Product Lines
We now formalize the representation of a product line.
The following concepts are built upon some deltoid
(P,D, ·, ε,−(−)), which we assume as given in the defini-
tions below.

A product line consists of several ingredients. There is a
finite set of relevant features F . From a delta modeling per-
spective, these features have no inherent semantic meaning
and are treated as labels. It also contains a feature model,
as follows:

Definition 5 (Feature Model). A feature model
Φ ⊆ P(F) is a set of sets of features from F . Each F ∈ Φ
is a set of features corresponding to a valid feature configu-
ration, i.e. a set of features that may be active together.

Then, a product line contains a core product c ∈ P and an
underlying delta model, the selective application of which to
c should be able to generate any product in the product line.
A delta model describes the set of deltas required to build
a specific product, along with a strict partial order on those
deltas, restricting the order in which they may be applied.

Definition 6 (Delta Model). A delta model is a tu-
ple (D,≺), where D ⊆ D is a finite set of deltas and
≺ ⊆ D × D is a strict partial order on D. x ≺ y states
that x must be applied before y, though not necessarily di-
rectly before.

The partial order represents the intuition that a delta ap-
plied later has full access to earlier deltas and more authority
over modifications to the product.

To link features and deltas, we use application conditions.

Definition 7 (Application Function). Given a set
of deltas D ⊆ D and feature model Φ, an application func-
tion γ : D → P(Φ) is used to map each delta x ∈ D to its
application condition. An application condition γ(x) ⊆ Φ
determines for which feature configurations delta x needs to
be applied.

In conclusion, a product line describes all possible products,
and how to generate them.

Definition 8 (Product Line). A product line is a
tuple (F ,Φ, c,D,≺, γ) where F is a feature set, Φ ⊆ P(F)
is a feature model, c ∈ P is a core product, (D,≺) is an
underlying delta model and γ : D →P(Φ) is an application
function.

If some feature configuration F is valid according to Φ, its
corresponding product can be generated by prod(PL, F), us-
ing all elements of the product line. For a detailed descrip-
tion of this process, we refer the reader to [4, 5].

3. CASE STUDY
Traditionally a product line only exists in the development
stage [11]. It is a way to efficiently reuse code between oth-
erwise separate products. However, the delta modeling for-
malism described in Section 2 can be adapted for an entirely
different kind of use-case. That of a dynamic product line,
a product line which reconfigures itself at runtime.

3.1 Profile Management
The first thing that may come to mind when thinking about
dynamic product lines is a software product line with fea-
tures that can be dynamically turned on and off, based on
the personal preferences of who is using the software at the
time or because of changing requirements. [8, 6]

While that would be a valid use-case, we choose to go a
different direction in motivating and explaining the research
in this paper: profile management on modern smartphones
and other mobile devices. This may prove more interest-
ing, as it departs from what a product line is traditionally
supposed to be. It is also very relevant these days.

Modern smartphones and tablets, such as those based on
Android [7], iOS [1] or Windows Phone [10], have access
to a great variety of data with regard to the current cir-
cumstances of their user: They know the current time and
their current physical location. They know which appli-
cation the user is currently running, what their scheduled
appointments are, and much more. This sort of informa-
tion can be used to automatically adjust the devices settings
based on user defined rules, such as: “when my headphones
are plugged in, play music” or “when my battery is running
low, turn down screen brightness”. This is known as auto-
mated profile management. We show that delta modeling is
a natural way to model such rules.

The basic idea is this: a profile, consisting of a specific con-
figuration of the devices settings, is represented by a prod-
uct. Deltas can be applied to modify those settings. Fea-
tures represent specific conditions on (environmental) fac-
tors monitored by the device. Application conditions repre-
sent the exact conditions under which certain settings should
be modified.

A profile management application for Android [7] is cur-
rently in the final stages of development (Delta Profiles [9]).
It uses the theory in this paper.

3.2 Profile Deltoid
We now formalize these notions by defining a concrete del-
toid (Definition 3). Some formerly abstract constructs are
refined in this section, such as what a product, a feature and
a delta is. Note, however, that the remainder of this paper
is still in an abstract setting, and these refinements are only
used when referring to Section 3 for illustration.

We start by narrowing down, for a specific device, what
it is capable of monitoring and modifying for us:

Definition 9 (Device). A device is a 4-tuple
(FC , S, V, vl) where FC contains the names of the factors
that the device is capable of monitoring (e.g. ‘time’, ‘gps
location’, ‘battery status’), S contains the names of the
settings the device controls (e.g. ‘volume’, ‘brightness’, ‘im
status’), V is the encompassing set of possible values for
these factors and settings and vl : (FC ∪ S)→P(V) maps
each factor and setting to the set of values it is allowed to
take on.

To simplify matters, we assume that FC and S are disjoint,
although in practice this will not be the case. i.e., we might
want to modify the devices settings based on monitoring
other settings. This may introduce a host of new challenges
that we plan to address in future work.

Each possible device defines a concrete deltoid upon which
(dynamic) product lines can be created. From this point on,

we assume that some specific device (FC , S, V, vl) is given,
and define a deltoid based on that device.

Definition 10 (Profiles). We refine the set of possi-
ble products to the set of possible profiles, mapping settings
to values:

P def
= S → V

such that for each p ∈ P and s ∈ S we have p(s) ∈ vl(s).
(Definition 9)

Example 1 (Profile). As an example, consider the
following profile:

pe =



‘volume’ 7→ 10,
‘bluetooth’ 7→ on,

‘brightness’ 7→ 3,
‘foreground app’ 7→ ‘clock’,

...


.

Since S is usually quite large, we show only the relevant parts
of profiles.

Definition 11 (Profile Deltas). We refine the set
of deltas to the set of profile deltas, which modify profiles:

D def
= S⇀V

such that for each d ∈ D and s ∈ dom(D) we have d(s) ∈
vl(s) (Definition 9). D is similar to P, as both map settings
to values, but D is a partial function. Settings that are not
mapped are not modified by the delta. Neutral delta ε doesn’t
map any settings, so it modifies nothing.

Example 2 (Profile Delta). As an example, take
the following profile delta:

de =

{
‘volume’ 7→ 5,

‘foreground app’ 7→ ‘calendar’

}
.

We assume that settings that are not mentioned, are not
mapped.

When a delta is applied to a profile, it overwrites that pro-
file’s values:

Definition 12 (Profile Delta Action). Profile
delta action −(−) : D×P → P is defined as follows, for all
d ∈ D, p ∈ P and s ∈ S:

(d(p))(s)
def
=

{
d(s) if s ∈ dom(d)
p(s) otherwise

Example 3 (Profile Delta Action). For example,
delta de (Example 2) applied to product pe (Example 1) re-
sults in the following product:

de(pe) =



‘volume’ 7→ 5,
‘bluetooth’ 7→ on,

‘brightness’ 7→ 3,
‘foreground app’ 7→ ‘calendar’,

...


.

Profile delta composition · : D×D → D is implicitly defined
by Definition 12, and can be seen as function composition.
Deltas that are applied later can overwrite settings from
deltas that are applied earlier.

This defines a concrete deltoid (P,D, ·, ε,−(−)) for each
device (FC , S, V, vl).

3.3 Rule Sets as Product Lines
The idea behind the profile manager application is that the
user manually creates a set of rules using the app’s graphical
interface, which is then put into effect as a dynamic product
line, regulating the devices profiles.

Let us examine the parts of a profile manager product line
more closely. Recall that an abstract product line consists
of (F ,Φ, c,D,≺, γ) (Definition 8). In our concrete setting
of profile management, D, ≺ and γ are based directly on
user-defined rules. The rest is implicitly derived.

Before we describe the ingredients of such a product line,
we refine the notion of ‘feature’ that has to be used:

Definition 13 (Conditions). We restrict the set of
features for any product line for a device (FC , S, V, vl) to
the set of possible conditions over factors:

F ⊆ FC ×P(V)

s.t. for each (fc, V ′) ∈ F we have V ′ ⊆ vl(fc) (Definition 9).

Example 4 (Condition). As an example, consider
the following conditions:

fe1 =
(

‘time’, between 9:00 and 17:00
)
,

fe2 =

(
‘gps location’, within 1 km of

[+52◦ 21’ 23”, +4◦ 57’ 8”]

)
.

Note that these names are mapped to a set of values. A
condition is satisfied (a feature is ‘on’) if the actual value is
contained within that set.

The user can input rules which include conditions and ef-
fects. These form the application function γ (Definition 7)
and the delta set D respectively.

Example 5 (Rule). For example, the rule: “if I am
within 1 km of [+52◦ 21’ 23”, +4◦ 57’ 8”] and the time is
between 9:00 and 17:00, set the volume to 5 and set the
calendar application to the foreground” is encoded as follows
(using Examples 2 and 4):

D 3 de
γ(de) = {F ∈ Φ | {fe1, fe2} ⊆ F }

A partial order ≺ can be defined between the deltas to en-
code rule priority, in order to avoid and resolve conflicts [4,
5]. Basically, a delta can overwrite values of other deltas if
it is greater in the partial order.

The other elements of the product line are implicitly de-
rived, as follows. F contains all conditions that appear in
application function γ:

F =
⋃
d∈D

γ(d)

The feature model Φ (Definition 5) is implicitly defined by
the conditions in F . Basically, Φ consists of all feature con-
figurations that do not contain any contradictory conditions
but do contain all implied conditions. Finally, for our pro-
file manager, we assume the core product c to be the devices
profile as the user has manually set it before any deltas are
applied. In effect, in c, every value is set to ‘manual’ ∈ V .

3.4 Example Rule Set
We now give an example set of rules and the corresponding
product line:

• If I am within 1 km of [+52◦ 21’ 23”, +4◦ 57’ 8”] and
the current time is between 9:00 and 17:00 then

– set ‘volume’ to 5.

• If I currently have a meeting scheduled then

– set ‘volume’ to 0 and

– set ‘foreground app’ to ‘meeting minutes’

and this rule has priority over the previous rule.

Note that we need to establish a priority between the two
rules, as they might otherwise conflict with each other on
the volume setting. These are the deltas:

D 3 d1 =
{

‘volume’ 7→ 5
}
,

D 3 d2 =

{
‘volume’ 7→ 0,

‘foreground app’ 7→ ‘meeting minutes’

}
with d1 ≺ d2. And these are the application conditions:

γ(d1) = {F ∈ Φ | {t, l} ⊆ F } ,
γ(d2) = {F ∈ Φ | {m} ⊆ F }

where

t =
(

‘time’, between 9:00 and 17:00
)
,

l =

(
‘gps location’, within 1 km of

[+52◦ 21’ 23”, +4◦ 57’ 8”]

)
,

m =
(

‘ongoing meeting’, yes
)
.

Based on this, F = {t, l,m} and the feature model Φ =
P(F) contains all combinations of conditions, as none of
them exclude or imply each other. So there are 8 possible
profiles. We will later use this product line for illustration.

4. DYNAMIC PRODUCT LINES
A naive way of turning a static product line PL into a dy-
namic product line (DPL), i.e., to dynamically switch from
one feature configuration (F) to another (F ′) and keep the
current product consistent with that feature configuration,
is to generate the product in the traditional way, namely
prod(PL, F ′), each time the feature configuration changes.
However, this is rather costly, and can hurt performance.
The other extreme is to pre-generate all products, and to
continually switch between them. However, the number of
possible products can be exponential in the number of fea-
tures, so this is infeasible for non-trivial product lines.

4.1 Mealy Machines
We represent a DPL as a Mealy Machine. A Mealy Machine
is a finite automaton with an input symbol and an output
symbol on each transition [3]. We assume that in a DPL
the feature configuration changes dynamically by individual
features being turned on and off with regard to the current
feature configuration. These features are used as input sym-
bols for our Mealy Machine. The output symbols are deltas
which, when applied to the current product, yield a new
product consistent with the new feature configuration.

Definition 14 (Mealy Machine). A Mealy Machine
is represented as a 5-tuple (S,Σ,Λ,T ,G) where S is a set of
states, Σ is an input alphabet, Λ is an output alphabet, T :
S × Σ⇀S maps a state and input symbol onto a next state
and G : S × Σ⇀Λ maps a state and input symbol onto an
output symbol. T and G are partial functions but are defined
for the same inputs, i.e. dom(T) = dom(G). Sometimes the
definition of Mealy Machine includes an initial state, but for
us the initial state is not fixed, so we do not include one.

We now introduce some useful notation:

Notation 1 (Symmetric Difference). We’ll often
use symmetric difference between sets, which is denoted:

F1	F2
def
= (F1 ∪ F2) \(F1 ∩ F2).

Notation 2 (Product Difference). Since we as-
sumed our deltoid to be maximally expressive (Definition 4),
any product can be transformed into any other by applica-
tion of the right delta. The delta that transforms p into p′

is denoted p 7→ p′:

(p 7→ p′)(p) = p′

For simplicity, we assume that there is always only one delta
transforming a specific product to another.

Finally, we define a dynamic product line as a Mealy Ma-
chine with specific states, inputs, outputs and conditions.

Definition 15 (Dynamic Product Line). Given a
product line PL = (F ,Φ, c,D,≺, γ), we define its dynamic
product line as a Mealy Machine (Φ,F ,D, T,G) where:

• Every state is a valid feature configuration in Φ. From
here on we use the terms ‘state’ and ‘feature configu-
ration’ interchangably for dynamic product lines.

• Every input symbol is a feature in F .

• Every output symbol is a delta in D.

• T (F, f) = F 	{f}. A feature input is an event that
triggers that feature to be added to or removed from the
originating state, resulting in a target state.

• G(F, f) = prod(PL, F) 7→ prod(PL, T (F, f)). The out-
put generated by a transition is the delta required to
transform the product corresponding to the originating
state to the product corresponding to the target state.

T (F, f) and G(F, f) are only defined if F 	{f} ∈ Φ.

A dynamic product line has to be generated only once, and
can then be run indefinitely. Figure 1 shows a graphical
representation of the dynamic product line generated from
our Section 3.4 example. Besides the conditions t, l, m and
deltas d1, d2 given there, the three extra deltas that appear
in the diagram are:

d′1 =
{

‘volume’ 7→ ‘manual’
}
,

d′2 =

{
‘volume’ 7→ ‘manual’,

‘foreground app’ 7→ ‘manual’

}
,

d′′2 =

{
‘volume’ 7→ 5,

‘foreground app’ 7→ ‘manual’

}
.

Note from Figure 1 that we have entered a very different
view of our product line than the one formed in Section 2.2.

∅

lt m

t, l t,m l,m

t, l,
m

t/εt/ε l/
ε l/

ε

m/d
2

m/d ′
2

l/
d
1

l/
d
′ 1

m/d
2

m/d ′
2

t/d
1

t/d
′
1

m/d
2

m/d ′
2

t/ε

t/ε

l/
ε l/

ε

m/d
2

m/d ′′
2

l/
ε

l/
ε

t/εt/ε

Figure 1: The dynamic product line of the Sec-
tion 3.4 example. Note that when looking at it as a
cuboid, each dimension represents one feature.

Whereas there deltas and their partial order were the main
focus, we assume now that those have been processed, and
we are looking at the different products of the product line,
and how they relate to each other by features and deltas.
We now prove that if you start with a product corresponding
to some state, walking any path from that state in the DPL
and applying the generated output deltas to that product
results in a product consistent with the new state.

Theorem 1 (Product Consistency). Given a dy-
namic product line DPL = (Φ,F ,D, T,G) generated from
PL. For any two states F,G ∈ Φ and any path
f1, . . . , fn ∈ F∗ such that T (· · ·T (F, f1) · · · , fn) = G,
deltas d1, . . . , dn ∈ D∗ are generated as output such that
dn(· · · d1(prod(PL, F)) · · ·) = prod(PL, G).

Proof. Induction on n:

• n = 0. Immediate.

• n > 0. We abbreviate prod(PL, F) with p(F)
and T (F, f1) with F ′ for all F ∈ Φ:

dn(· · · d2(d1(p(F))) · · ·) = (Def. 15)
dn(· · · d2(G(F, f1)(p(F))) · · ·) = (Def. 15)
dn(· · · d2((p(F) 7→ p(F ′))(p(F))) · · ·) = (Not. 2)
dn(· · · d2(p(F ′)) · · ·) = (induction)
p(G) = prod(PL, G)

4.2 Event Based Strategy
We first describe the most straight-forward strategy for ‘run-
ning’ a DPL. The concepts here are quite traditional, but
they lead us nicely into Section 5, in which we need to refer
back to them.

Let us assume that the target feature configuration (or
target state) can only change by a single feature being turned
on or off. Seeing this as an event, we can use it directly as
input for our Mealy machine. We then apply the generated
delta to the current product to bring it up to date. But in

order to compare this strategy to strategies that facilitate
multiple features to be triggered simultaneously, we look at
it in a slightly different way.

We keep track of the target state tfc ∈ Φ. Before the
Mealy Machine starts, we set the current state cfc ∈ Φ equal
to the target state. The current product cp is then generated
in the traditional static way (Section 2.2):

cfc ← tfc
cp ← prod(PL, cfc).

Then, when the target state changes at runtime, we nonde-
terministically fire an event f from the difference between
current and target state cfc	 tfc:

1. update the product cp ← G(cfc, f)(cp)

2. set the next state cfc ← T (cfc, f)

until the DPL has stabilized, meaning that there is no feature
left to fire.

We need to make sure that any strategy we use results in
a new current product consistent with the target state after
stabilization.

Definition 16 (Correct Target Product). We
say that a certain strategy for running a DPL reaches a
correct target product iff whenever cfc 6= tfc, the Mealy
Machine will stabilize with cp = prod(PL, tfc).

Theorem 2. The event based strategy always reaches a
correct target product.

Proof. cp is consistent with tfc after initialization.
Then, when tfc changes, there is an f such that tfc =
cfc	{f} (Definition 15). Feature event f is fired, giving
cp ← G(cfc, f)(cp) and cfc ← T (cfc, f) = tfc. So by Theo-
rem 1, cp = prod(PL, cfc) = prod(PL, tfc).

5. COST AND OPTIMIZATION
In this section, we discuss the cost of dynamic product lines,
and the minimization of that cost.

5.1 Cost
We assume that occupying a state in a DPL has a cost: the
cost of monitoring the features of the outgoing transitions
for change. We posit that monitoring some features will
be more expensive than monitoring others. For example, in
Section 3.4 it will cost more power to continually monitor the
current ‘gps location’ (l) than it will to monitor the current
‘time’ (t).

First we introduce some cost domain C over time (such
as power in watt).

Definition 17 (Cost). Given dynamic product line
(Φ,F ,D, T,G) we introduce a function cost : Φ × F → C.
cost(F, f) expresses the cost of monitoring feature f from
state F . A feature is only monitored from a state if it has
an outgoing transition there, so if (F, f) /∈ dom(T) then
cost(F, f) = 0 (the additive neutral element of C).

In the Section 3 profile manager, we assume that the cost
of monitoring a condition depends only on the factor being
checked, so we can use a short notation for that: cost(fc) =
cost(F, (fc, V ′)) for all F ∈ Φ, fc ∈ FC and V ′ ⊆ V .

Basically, we minimize the cost of a DPL by removing
costly transitions, but only where this would not ‘break’
the machine. This means we only need to monitor features
when they become relevant. For example, in the Section 3
profile manager, we want to modify the profile when we are
in a certain ‘gps location’ (l) at a certain ‘time’ (t). Either
condition satisfied on its own does not modify the profile. So
it makes sense to only start monitoring ‘gps location’ (the
more costly factor), when it is already the right ‘time’.

5.2 Optimization
We need to find conditions under which transitions may be
removed, as well as an accompanying strategy for walking
through a reduced DPL.

We first establish some useful notions. We set up an equiv-
alence relation between different feature configurations that
correspond to the same generated product.

Definition 18 (Feature Config. Equivalence).
Given a product line PL = (F ,Φ, c,D,≺, γ), two feature
configurations F,G ∈ Φ are equivalent, denoted F ≡PL G,
iff prod(PL, F) = prod(PL, G). When the product line is
clear from context, we omit the subscript.

Realize that while running a DPL, by Definition 16, we do
not care whether we end up in the exact target state. It is
sufficient that we always reach an equivalent state. So this
will be a useful notion once we start removing transitions.

In theory it could be enough if a state from every equiv-
alence class remains reachable from every other equivalence
class. But the accompanying strategy for walking through
it would then have to be some systematic search algorithm
in order to locate the new target state every time. We want
configuration switches to be swift and a search would be
too expensive. So we need some middle ground. We give a
possible solution in Sections 5.3 and 5.4.

5.3 Reduced Dynamic Product Lines
We are going to reduce dynamic product lines only so far
that we can still reach a target equivalent state by nonde-
terministically firing from a set of available transitions which
should be easily calculable:

Notation 3 (Outgoing Transitions). We write the
set of outgoing transitions from state F ∈ Φ as:

out(F)
def
= { f | (F, f) ∈ dom(T) }

Definition 19 (Available Transitions). For cur-
rent state cfc ∈ Φ and target state tfc ∈ Φ, the set of
available transitions is defined as:

at(cfc, tfc)
def
= (cfc	 tfc) ∩ out(cfc)

When walking a DPL from which transitions are removed, it
is possible that our path will be blocked, preventing current
state cfc to become equal to target state tfc. This means
that even though tfc will only change by one feature at a
time, a gap greater than one feature may appear between the
two. So at each state there may be more than one transition
available. We give a new transition function which takes a
target state, rather than a single feature, and returns the
set of possible resulting states. It is defined recursively.

∅

lt m

t, l t,m l,m

t, l,
m

t/εt/ε
m/d

2

m/d ′
2

l/
d
1

l/
d
′ 1

m/d
2

m/d ′
2

t/d
1

t/d
′
1

m/d
2

m/d ′
2

m/d
2

m/d ′′
2

Figure 2: The reduced version of the Figure 1 DPL
with equivalence classes marked.

Definition 20 (Target Based Trans. Function).
Given dynamic product line (Φ,F ,D, T,G), the target based
transition function T : Φ× Φ→P(Φ) is defined as:

T (cfc, tfc)
def
=

{
{cfc} if act = ∅⋃

f∈act T (T (cfc, f), tfc) otherwise

where act is an abbreviation for at(cfc, tfc).

It represents the set of possible transition sequences from
cfc when targeting tfc. Note that the function always ter-
minates, as the set act becomes smaller when a step is taken.

We now define what a reduced dynamic product line is:

Definition 21 (Reduced Dynamic Product Line).
The Mealy Machine DPL′ = (Φ,F ,D, T ′, G′) is a reduced
dynamic product line iff there is a dynamic product line
DPL = (Φ,F ,D, T,G) such that:

• ∀(F, f) ∈ dom(T ′) : T ′(F, f) = T (F, f)

• ∀(F, f) ∈ dom(G′) : G′(F, f) = G(F, f)

• ∀cfc, tfc ∈ Φ : ∀F ∈ T ′(cfc, tfc) : F ≡ tfc

The first two conditions say that the set of transitions in
DPL′ should be a subset of those in DPL. The third makes
sure that despite the ‘missing’ transitions, we still always
reach a correct target product. Note that by that third
condition, we may only remove transitions with ε output.

Figure 2 shows a reduced version of the dynamic product
line of Figure 1 with equivalence classes marked (basically,
wherever an ε transition is or was).

Let us assume that for the device we are considering:

cost(‘time’) < cost(‘ongoing meeting’)
< cost(‘gps location’).

So we would like to get rid of l/ε transitions first, then m/ε
transitions, then t/ε transitions, so long as the third condi-
tion from Definition 21 continues to hold. As you can see

in Figure 2, we were able to remove 10 transitions, signifi-
cantly reducing the overall cost of the DPL. Intuitively, the
transitions between ∅ and l could be removed, because the
‘gps location’ does not become relevant until it is the right
‘time’. The other 8 transitions could be removed because d2
completely overwrites the effect of d1, so it does not mat-
ter what happens with t and l while we are in a scheduled
meeting. Profile manager rules often have such properties
in practice, so the DPL can often be significantly optimized.

5.4 Target Based Strategy
The strategy of Section 4.2 is most straight-forward, but it
will no longer reach a correct target product (Definition 16)
after we have removed transitions, because we might dis-
regard a feature event when we are not monitoring it, and
then neglect to apply it when it does becomes relevant. The
solution is to modify our strategy to take this into account,
to safely walk a reduced DPL (Definition 21).

The target state tfc will gradually change by single fea-
tures being turned on and off, as before. But now the cur-
rent state cfc will always try to ‘mimic’ the target feature
configuration by generating feature events based on the cur-
rent difference between the two (Definition 19) and walking
the Mealy Machine accordingly. For example, if the current
state is {f, g} and the target state is {g, h}, the f and h
events may be triggered in a nondeterministic order until
cfc = tfc or until we are blocked from going any further by
missing transitions.

The target based strategy works as follows. Given the
reduced dynamic product line DPL = (Φ,F ,D, T,G) cre-
ated originally from product line PL, we first set the initial
state cfc to equal tfc, and its corresponding product cp is
generated in the familiar static way as before:

cfc ← tfc
cp ← prod(PL, cfc)

When we start running the DPL, tfc may change and the set
of available transitions at(cfc, tfc) may become non-empty.
When that happens, we initialize an empty delta d:

d← ε

and repeat the following until at(cfc, tfc) is empty again:

1. nondeterministically choose a feature f ∈ at(cfc, tfc),

2. compose the resulting delta d← G(F, f) · d and

3. set the next state cfc ← T (cfc, f).

This is consistent with the target based transition function
from Definition 20.

When at(cfc, tfc) is once again empty, and the dynamic
delta model has stabilized, we apply the accumulated deltas
to the current product:

cp ← d(cp)

We now prove that the target based strategy always results
in a correct target product (Definition 16) for reduced dy-
namic product lines.

Theorem 3. The target based strategy applied on a re-
duced dynamic product line always reaches a correct target
product.

The proof of this theorem relies heavily on the third con-
dition of Definition 21. Finding an efficient algorithm for
deciding whether or not a transition may be removed is fu-
ture work.

Proof. By initialization, cp is consistent with tfc in the
beginning. Then, whenever tfc changes, cfc will become one
of the states in T (cfc, tfc) after stabilization. By Theorem 1,
we have cp = prod(PL, cfc). By Definition 21, we will have
cfc ≡ tfc and thus cp = prod(PL, cfc) = prod(PL, tfc).

With an example walk in Figure 2, we show how we
can always reach a state equivalent to the one targeted.
We start in state cfc = tfc = ∅. Say we reach speci-
fied gps coordinates before 9:00. Transition l would be
fired, if it were available. As it is, cfc = ∅ and tfc = {l}.
If we then start a scheduled meeting, m is fired, and
cfc = {m} and tfc = {l,m}. If the meeting ends (bringing

us back to the previous situation), and it becomes 9:00,
cfc = tfc = {t, l}, because t and l both fire. In all cases,
we have cfc ≡ tfc, so we always reach the correct product.

6. CONCLUSION
Dynamic Delta Modeling is an extension of Abstract Delta
Modeling [4, 5] which includes a formal framework for mod-
eling dynamic product lines. Using Mealy Machines, we
accurately describe the behavior of product lines with dy-
namic feature configurations, while remaining on an abstract
level. We have defined a cost-model, and shown an opti-
mization opportunity for certain kinds of dynamic product
lines. We have described the practical case-study of profile
management on modern mobile devices directly in our for-
mal framework, illustrating the versatility of ADM and the
applicability of its dynamic extension.

6.1 Related Work
Hallsteinsen et al. [8] introduce several properties they be-
lieve constitute a dynamic software product line. Dynamic
Delta Modeling allows several of these, such as ‘dynamic
variability’, ‘changes binding several times over lifetime’ and
‘context awareness’, but does not yet model others, such as
‘variation point change during runtime’ and ‘deals with un-
expected changes during runtime’. In our approach, even
though the current feature configuration can change during
runtime, the set of available feature configurations is still
fixed at ‘build time’.

Calling the case study from Section 3 a software product
line may be a stretch. It bears greater resemblance to a
Self Adaptive System (SAS) [?]. It is true that, even though
ADM was designed from a software product line perspective,
its abstract nature makes its dynamic counterpart quite suit-
able for modeling a SAS (under some of the varied definitions
of the term).

Because we are working in an abstract setting, a lot of
interesting questions related to dynamic software product
lines were not discussed, such as how to manage dynamic
switching of features when they extend or reduce data-types,
or when to allow a switch such that it does not break nor-
mal flow of control. The work of Damiani and Schaefer [6]
complements our work in this regard. A Mealy Machine gen-
erated by the technique in this paper, in a concrete object
oriented setting, may be enriched by their reconfiguration
translations, basically embedding a reconfiguration automa-
ton into our DPL, and in that way reconfiguring existing
objects in the heap to be consistent with the change in code.

To be fully compatible with their technique, stabilization of
the DPL should wait until the reconfigure statement is
encountered by the program.

6.2 Future Work
We have made a beginning, but there is plenty of opportu-
nity for future work. Optimization of the dynamic product
line is still a complex endeavor, so there is need for an effi-
cient algorithm. Also, we now assume that the target fea-
ture configuration can only change by single features being
turned on and off and we would like to loosen that restric-
tion, a goal that introduces several complications. On a
more concrete level, it would be interesting to enrich the
profile manager to allow monitoring – as well as modifying
– settings. As delta application would be able to trigger a
new feature configuration change, some sort of termination
analysis would be required.

7. REFERENCES
[1] Apple. iOS. http://www.apple.com/ios.
[2] D.S. Batory. Feature Models, Grammars, and

Propositional Formulas. In Proc. Int’l Software
Product Line Conference (SPLC), 2005.

[3] S.S. Circuits. A method for synthesizing sequential
circuits. Bell System Technical Journal, 1955.

[4] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract
delta modeling. In Proc. of GPCE, pages 13–22. ACM,
2010.

[5] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract
delta modeling. Accepted to MSCS special issue, 2012.

[6] F. Damiani and I. Schaefer. Dynamic delta-oriented
programming. In Proceedings of the 15th International
Software Product Line Conference, page 34. ACM,
2011.

[7] Google. Android. http://www.android.com.
[8] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid.

Dynamic software product lines. Computer,
41(4):93–95, 2008.

[9] M. Helvensteijn. Delta Profiles.
http://code.google.com/p/delta-profiles.

[10] Microsoft. Windows Phone.
http://www.microsoft.com/windowsphone.

[11] K. Pohl, G. Böckle, and F. Van Der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, Heidelberg, 2005.

[12] I. Schaefer. Variability Modelling for Model-Driven
Development of Software Product Lines. In Intl.
Workshop on Variability Modelling of
Software-intensive Systems (VaMoS 2010), 2010.

[13] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and
N. Tanzarella. Delta-oriented Programming of
Software Product Lines. In SPLC, volume 6287 of
LNCS, pages 77–91. Springer, 2010.

[14] I. Schaefer, A. Worret, and A. Poetzsch-Heffter. A
Model-Based Framework for Automated Product
Derivation. In Proc. of Workshop in Model-based
Approaches for Product Line Engineering (MAPLE
2009), 2009.

